
USAspending Database Archive - Recommended
Download and Restoration Process
Our entire database as a PostgreSQL archive — the most complete download option available for advanced users.

Overview
This document provides instructions for downloading and restoring the USAspending.gov database archive. The
archive provides the complete database powering USASpending.gov, which includes data on all spending by the
federal government, including contracts, grants, loans, employee salaries, and more.

Prerequisites
In order to be successful using this document, there are several things that you must have set up ahead of time.

1. Hard Drive Space. The database is large, and will consume a lot of disk space. Ensure you have disk space
to accommodate the following:

Over 51 gigabytes of hard drive space to store the uncompressed (unzipped) database archive file that was
downloaded
Over 1.5 terabytes of additional hard drive space to store the fully restored database, with all materialized
view data refreshed.

NOTE: The base tables represent about ½ of this total database size. The other ½ of this total database
size is the materialized view data and their indexes. There are options in the steps below to skip
generation of materialized views and leave base tables only. This will affect your ability to run the
USAspending API, as it relies on these materialized views, but will still provide the complete set of
USAspending's data across the non-materialized tables.

NOTE: These are approximate sizes at the date this document was last revised (July 2019). Sizes will
continue to increase beyond what is referenced above as our database continues to grow over time.

2. PostgreSQL. The database archive can be restored to a PostgreSQL database using pg_restore which is
bundled with PostgreSQL. It has been tested with PostgreSQL	10.6 .

3. Postgres Contribution Modules. The database uses a handful of PostgreSQL EXTENSIONS , and therefore your
installation of PostgreSQL will need to have all of the modules required by those extensions. These can be
added-on in a package often named something like postgres-contrib* as part of the package manager for
your platform. See the PostgreSQL download page for where to find the contributions modules:
https://www.postgresql.org/download/.

TIP: You can see all the extensions used with pg_restore	--list	usaspending-db-dump-dir	|	grep
EXTENSION once the archive is unzipped.

4. root Superuser. A user named root on your PostgreSQL server with SUPERUSER privileges. The archive
was dumped from a generic database where objects were owned by a user named root , and it will simplify the
restore if that same user exists on the server this database will be restored to. If this can't be done, then
pg_restore should be invoked with the --no-owner flag. Consult the PostgreSQL createuser

documentation for how to create a user or alter permissions.
5. Time. Given the size of data to be restored, it can take many hours to complete a full database restore. If you are

restoring to a remote location, make sure you have a way to keep the restore process running in the background
without your remote connection timing out.

6. Tools. We mention several tools we use in these instructions. This is not intended to be an endorsement of any
specific tools.

https://www.postgresql.org/docs/current/static/app-pgrestore.html
https://www.postgresql.org/download/
https://www.postgresql.org/docs/current/static/app-createuser.html

Steps

1. Download the Archive File

The archive file is a .zip file that can be downloaded from the web. The hyperlink for downloading that file should
be provided in the same place that this document was linked.

Click the link and save the file onto your hard drive. If you are placing the file on a remote machine, you may want to
use tools like wget , cURL , or Invoke-WebRequest from a command shell to pull the file down to the filesystem.

2. Unzip the File and Inspect the Archive

Once downloaded, unzip the file to the place where you want to store the archive. For example, in a Linux Bash shell:

unzip	usaspending-db.zip

The result of the unzip should be a directory named usaspending-db-dump-dir , and within that directory many files
whose names are numbers, like 5284.dat.gz , and a toc.dat file. This is the "directory" format of a PostgreSQL
dump (e.g. pg_dump	--format=directory).

Once unzipped, you can now inspect the contents of the archive using the --list flag of pg_restore . For
example:

pg_restore	--list	usaspending-db-dump-dir

3. Restore the Database

This is the recommended set of shell commands to use to restore the database.

Values You May Need to Change

1. Connection variables
The DBPASSWORD variable holding the password for your root user. Here, it's shown as the value
password . You can use that, but you will want to use something else if you plan on sharing access to the

restored database.
The host and port of your Postgres server may be elsewhere, as well. So change DBHOST and DBPORT
variables accordingly
If you are restoring to a different or existing database, you may need to change the DBNAME variable to
something other than data_store_api

2. The DUMP_DIR variable should be the directory that you unzipped the archive into, and holds the usaspending-
db-dump-dir directory

3. You may want to remove or comment out the refreshing of the materialized views (below the designated line in
the script). Or refresh them as needed one-by-one after the base tables have been loaded.

 Warnings

Database Dropped. CAUTION: The initial part of the script is set up to drop and re-create a brand-new database
using the DBNAME variable. Comment that out if you do not want to drop and re-create the database, but use an
existing one. NOTE: it must connect to the postgres (default name) database to run drop/create database
commands, so that database should exist and the root user should have permissions to it.
Materialized View Refresh Time. If included, refreshing the materialized views takes significantly longer than
restoring the base tables and their data.

Table data load is faster because it does COPY to pull table data in bulk from the archive file. This cannot be
done for materialized views, which must execute queries to get their data.

Database Restore Script

####	Connection	Variables	####
DBUSER=root
DBPASSWORD=password
DBHOST=127.0.0.1
DBPORT=5432
CONN=postgresql://$DBUSER:$DBPASSWORD@$DBHOST:$DBPORT
DBNAME=data_store_api

####	Dump	Variables	####
DUMP_DIR=/dump/data0
DUMP=$DUMP_DIR/usaspending-db-dump-dir

####	Database	Restore	####

#	DROP	and	CREATE	the	database,	if	it	exists
	psql	$CONN/postgres	-c	\
					"DROP	DATABASE	IF	EXISTS	$DBNAME"
	psql	$CONN/postgres	-c	\
					"CREATE	DATABASE	$DBNAME"

#	Create	list	of	ALL	EXCEPT	materialized	views	data	(defer	them),	to	restore
pg_restore	--list	$DUMP	|	sed	'/MATERIALIZED	VIEW	DATA/d'	>	$DUMP_DIR/restore.list

#	Restore	all	but	materialized	view	data
pg_restore	\
				--jobs	16	\
				--dbname	$CONN/$DBNAME	\
				--verbose	\
				--exit-on-error	\
				--use-list	$DUMP_DIR/restore.list	\
				$DUMP

#	Perform	an	ANALYZE	to	optimize	query	performance	in	view	materialization
psql	\
				--dbname	$CONN/$DBNAME	\
				--command	'ANALYZE	VERBOSE;'	\
				--echo-all	\
				--set	ON_ERROR_STOP=on	\
				--set	VERBOSITY=verbose	\
				--set	SHOW_CONTEXT=always	
				
#	===
#	====	Comment	or	remove	below	if	you	do	not	want	to	materialize	views	====
#	===

####	Materialized	View	Refresh	####

#	Create	list	of	ONLY	materialized	views	data	to	refresh
pg_restore	--list	$DUMP	|	grep	"MATERIALIZED	VIEW	DATA"	>	$DUMP_DIR/refresh.list

#	Refresh	materialized	view	data
pg_restore	\
				--jobs	16	\
				--dbname	$CONN/$DBNAME	\
				--verbose	\
				--exit-on-error	\
				--use-list	$DUMP_DIR/refresh.list	\
				$DUMP
					
#	Do	an	additional	ANALYZE	on	the	materialized	views	after	being	materialized

#	Do	an	additional	ANALYZE	on	the	materialized	views	after	being	materialized
pg_restore	--list	$DUMP	\
				|	grep	"MATERIALIZED	VIEW	DATA"	\
				|	awk	'{	print	"ANALYZE	VERBOSE",	$8";"	};'	\
				>	$DUMP_DIR/analyze_matviews.sql

psql	\
				--dbname	$CONN/$DBNAME	\
				--echo-all	\
				--set	ON_ERROR_STOP=on	\
				--set	VERBOSITY=verbose	\
				--set	SHOW_CONTEXT=always	\
				--file	$DUMP_DIR/analyze_matviews.sql

Alternative Restore Options with pg_restore

The directory format of the dump archive is very flexible and allows you to choose what aspect of the database
you want to restore. All of these options are listed in the documentation of pg_restore :
https://www.postgresql.org/docs/current/app-pgrestore.html

For example:

If you want to restore the schema of the database and no data, you can do that with the --schema-only flag.
If you want to drop all data for a table and re-add new data from this archive, you can do that with a combination
of the --table and --clean flags. It will drop the table, recreate the table, and reload data for the table. (If that
table has foreign key relationships you may also need --disable-triggers while it loads).
If you want to pick and choose what database objects are restored -- a subset of them -- you can build manifests
of what to restore using the --list flag. This is done in the recommended restore script above to perform the
restore in stages.

More detail in the Optimize Restore Order and Stages section

Recommended Flags

--verbose . Output verbose diagnostic messages.
--exit-on-error . Stop on the first encounter of an error. Best to do this so you don't waste time on a failed

load.
--clean and --if-exists together. If you are re-loading onto an existing database, this will replace any

database objects that already exists with those provided in the dump (overwrite them), if they exist.
--jobs	16 . This will use as many as 16 parallel workers to process the restore which can greatly speed up the

time it takes.

Appendix

Example Setup of Postgres on Red Hat Enterprise Linux (RHEL)

The following steps are an example of setting up PostgreSQL on RHEL. However, the official documentation should
always be consulted here:

https://wiki.postgresql.org/wiki/YUM_Installation
https://www.postgresql.org/download/linux/redhat/

sudo	yum	install	-y	https://download.postgresql.org/pub/repos/yum/10/redhat/rhel-7-x86_64/pgdg-redhat10-10-2.noarch.rpm
sudo	yum	install	-y	postgresql10
sudo	yum	install	-y	postgresql10-server

https://www.postgresql.org/docs/current/app-pgrestore.html
https://wiki.postgresql.org/wiki/YUM_Installation
https://www.postgresql.org/download/linux/redhat/

Ensure you have the contrib package for PostgreSQL (see "Prerequisites" above).

sudo	mkdir	/dump/data1/pgdata
sudo	chown	-R	postgres:postgres	/dump/data1/pgdata

sudo	su	-	postgres
export	PGDATA=/dump/data1/pgdata
/usr/pgsql-10/bin/initdb	--pgdata	$PGDATA
/usr/pgsql-10/bin/pg_ctl	-D	$PGDATA	start

Optimizing Restore Performance

Optimize Your Database Parallelism

You may be able to increase the default parallel workers for your database in the postgresql.conf file in the
PGDATA directory. This will give better performance loading this dump. If you have enough cores or vCPUs, consider

increasing the defaults for the following:

max_worker_processes (PG10 defaults to 8)
max_parallel_workers_per_gather (PG10 defaults to 2)
max_parallel_workers (PG10 defaults to 8)

If you have limited cores, you may want to lower the --jobs param in pg_restore .

Optimize Restore Order and Stages

Changing what is loaded when and in what order can help to speed up the database restore. Use the --list flag of
pg_restore to create sub-sets of database objects to load, and then use the --use-list flag to run pg_restore

in stages.

For instance, the step that actually materializes the data in the materialized views may move a lot faster if:

1. Table indexes are in place.
2. ANALYZE has been run on those tables.
3. Indexes have not yet been placed on the views.

You can experiment with alternate sequencing and staging of database objects to load using the --list and --
use-list flags, and may see improvements in your restore time.

	USAspending Database Archive - Recommended Download and Restoration Process
	Overview
	Prerequisites
	Steps
	1. Download the Archive File
	2. Unzip the File and Inspect the Archive
	3. Restore the Database
	Alternative Restore Options with pg_restore
	Recommended Flags

	Appendix
	Example Setup of Postgres on Red Hat Enterprise Linux (RHEL)
	Optimizing Restore Performance
	Optimize Your Database Parallelism
	Optimize Restore Order and Stages

